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Simple Technical Trading Rules and the 
Stochastic Properties of Stock Returns 

WILLIAM BROCK, JOSEF LAKONISHOK, and 
BLAKE LEBARON* 

ABSTRACT 

This paper tests two of the simplest and most popular trading rules-moving 
average and trading range break-by utilizing the Dow Jones Index from 1897 to 
1986. Standard statistical analysis is extended through the use of bootstrap tech- 
niques. Overall, our results provide strong support for the technical strategies. The 
returns obtained from these strategies are not consistent with four popular null 
models: the random walk, the AR(1), the GARCH-M, and the Exponential GARCH. 
Buy signals consistently generate higher returns than sell signals, and further, the 
returns following buy signals are less volatile than returns following sell signals, 
and further, the returns following buy signals are less volatile than returns follow- 
ing sell signals. Moreover, returns following sell signals are negative, which is not 
easily explained by any of the currently existing equilibrium models. 

THE TERM "TECHNICAL ANALYSIS" is a general heading for a myriad of trading 
techniques. Technical analysts attempt to forecast prices by the study of past 
prices and a few other related summary statistics about security trading. 
They believe that shifts in supply and demand can be detected in charts of 
market action. Technical analysis is considered by many to be the original 
form of investment analysis, dating back to the 1800s. It came into widespread 
use before the period of extensive and fully disclosed financial information, 
which in turn enabled the practice of fundamental analysis to develop. In the 
United States, the use of trading rules to detect patterns in stock prices is 
probably as old as the stock market itself. The oldest technique is attributed 
to Charles Dow and is traced to the late 1800s. Many of the techniques used 
today have been utilized for over 60 years. These techniques for discovering 
hidden relations in stock returns can range from extremely simple to quite 
elaborate. 

*Brock and LeBaron are from the University of Wisconsin and Lakonishok is from the 
University of Illinois. We are grateful to Tim Bollerslev, K. C. Chan, Louis Chan, Eugene Fama, 
Bruce Lehmann, Mark Ready, Jay Ritter, William Schwert, Theo Vermaelen, and the editor, 
Rene Stulz, and anonymous referees. The paper was presented at the AFA Meetings at New 
Orleans, The Amsterdam Institute of Finance, the NBER Summer Institute, the University of 
Limburg, and The Wharton School. We are thankful to Hank Pruden, a leading technical 
analyst, for guidance on some of the technical analysis literature. Brock was partially supported 
by the National Science Foundation (SES 87-20671), the Vilas Trust, and the University of 
Wisconsin Graduate School. LeBaron was partially supported by the National Science Founda- 
tion (SES 91-09671), and the University of Wisconsin Graduate School. 
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The attitude of academics towards technical analysis, until recently, is well 
described by Malkiel (1981): 

Obviously, I am biased against the chartist. This is not only a personal 
predilection, but a professional one as well. Technical analysis is 
anathema to the academic world. We love to pick on it. Our bullying 
tactics are prompted by two considerations: (1) the method is patently 
false; and (2) it's easy to pick on. And while it may seem a bit unfair to 
pick on such a sorry target, just remember: it is your money we are 
trying to save. 

Nonetheless, technical analysis has been enjoying a renaissance on Wall 
Street. All major brokerage firms publish technical commentary on the 
market and individual securities, and many of the newsletters published by 
various "experts" are based on technical analysis. 

In recent years the efficient market hypothesis has come under serious 
siege. Various papers suggested that stock returns are not fully explained by 
common risk measures.' A line of research directly related to this work 
provides evidence of predictability of equity returns from past returns.2 In 
general, the results of these studies are in sharp contrast with most earlier 
studies that supported the random walk hypothesis and concluded that the 
predictable variation in equity returns was economically and statistically 
very small. Two competing explanations for the presence of predictable 
variation in stock returns have been suggested: (1) market inefficiency in 
which prices take swings from their fundamental values, and (2) markets are 
efficient and the predictable variation can be explained by time-varying 
equilibrium returns.3 There is no evidence so far that unambiguously distin- 
guishes these two competing hypotheses. 

1 A significant relationship between expected return and fundamental variables such as 
price-earnings ratio, market-to-book ratio, and size was documented. Another group of papers 
has uncovered systematic patterns in stock returns related to various calendar periods such as 
the weekend effect, the turn-of-the-month effect, the holiday effect, and the January effect. 

2Chopra, Lakonishok, and Ritter (1992), De Bondt and Thaler (1985), Fama and French 
(1986), and Poterba and Summers (1988) find negative serial correlation in returns of individual 
stocks and various portfolios over three- to ten-year intervals. Rosenberg, Reid, and Lanstein 
(1985) provide evidence for the presence of predictable return reversals on a monthly basis at the 
level of individual securities. Jegadeesh (1990) finds negative serial correlation for lags up to two 
months and positive serial correlation for longer lags. Lo and MacKinlay (1990a) report positive 
serial correlation in weekly returns for indexes and portfolios and a somewhat negative serial 
correlation for individual stocks. Lehmann (1990) and French and Roll (1986) report negative 
serial correlation at the level of individual securities for weekly and daily returns. Cutler, 
Poterba, and Summers (1990) present results from many different asset markets generally 
supporting the hypothesis that returns are positively correlated at the horizon of several months 
and negatively correlated at the 3-to-5 year horizon. 

3 Other explanations for predictability of returns over short horizons often mentioned are 
based on market microstructure stories. According to these explanations, reversals in recorded 
returns can be accounted for by movements from the bid to the ask. However, our strategies are 
not based on reversals, hence the microstructure explanation is implausible. 
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Although many earlier studies concluded that technical analysis is useless, 
the recent studies on predictability of equity returns from past returns 
suggest that this conclusion might have been premature.4 In this paper we 
explore two of the simplest and most popular technical rules: moving 
average-oscillator and trading-range break (resistance and support levels). In 
the first method, buy and sell signals are generated by two moving averages, 
a long period, and a short period. In the second method signals are generated 
as stock prices hit new highs and lows. These rules will be evaluated by their 
ability to forecast future price changes. For statistical inferences, standard 
tests will be augmented with the bootstrap methodology inspired by Efron 
(1979), Freedman and Peters (1984a, 1984b), and Efron and Tibshirani 
(1986). Following this methodology, returns from an artificial Dow series are 
generated and the trading rules are applied to the series. Comparisons are 
then made between returns from these simulated series and the actual Dow 
Jones series. 

Neither the bootstrap methodology nor the use of technical analysis to 
evaluate model specifications are in particular new to the finance literature. 
The contribution of this paper lies in the combination of these two techniques. 
This procedure allows testing a wide range of null models. When models are 
rejected by such a statistical test, information is provided on how to modify 
the model to achieve a better description of the series. In addition, the 
trading rules used in this paper may have power against certain alternatives 
that are difficult to detect using standard statistical tests. 

Few, if any, empirical tests in financial economics are free of the data- 
instigated pre-test biases discussed in Leamer (1978).5 The more scrutiny a 
collection of data receives, the more likely "interesting" spurious patterns will 
be observed. Stock prices are probably the most studied financial series and, 
therefore, most susceptible to data snooping. In addition, Merton (1987) 
suggests that individuals have a tendency to come up with "exciting" spuri- 
ous results (anomalies): 

All this fits well with what the cognitive psychologists tell us is our 
natural individual predilection to focus, often disproportionately so, on 
the unusual... This focus, both individually and institutionally, to- 
gether with little control over the number of tests performed, creates a 
fertile environment for both unintended selection bias and for attaching 
greater significance to otherwise unbiased estimates than is justified. 

Therefore, the possibility that various spurious patterns were uncovered by 
technical analysis cannot be dismissed. Although a complete remedy for 
data-snooping biases does not exist, we mitigate this problem: (1) by report- 

4 Some of the earlier work on technical analysis includes papers by Alexander (1961, 1964), 
Fama and Blume (1966), Levy (1967a, 1967b), Jensen (1967), and Jensen and Bennington (1970). 
Pt recent paper in this area is by Sweeney (1988). 

5Data-snooping issues are also discussed in Lakonishok and Smidt (1988) and Lo and 
MacKinlay (1990b). 
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ing results from all our trading strategies, (2) by utilizing a very long data 
series, the Dow Jones index from 1897 to 1986, and (3) emphasizing the 
robustness of results across various nonoverlapping subperiods for statistical 
inference.6 

Our study reveals that technical analysis helps to predict stock price 
changes. The patterns uncovered by technical rules cannot be explained by 
first order autocorrelation and by changing expected returns caused by 
changes in volatility. To put it differently, the trading profits are not consis- 
tent with a random walk, an AR(1), a GARCH-M model, or an Exponential 
GARCH. The results generally show that returns during buy periods are 
larger than returns during sell periods. Moreover, returns during buy periods 
are less volatile than returns during sell periods. For example, the variable- 
length moving-average strategy produced on average a daily return for buy 
periods of 0.042 percent, which is about 12 percent per year. In contrast, the 
corresponding daily return for the sell periods is - 0.025 percent, or about 
- 7 percent per year. This strategy results in a daily standard deviation of 
0.89 percent for buy periods and a higher one, 1.34 percent, for sell periods. 

The remainder of the paper is organized as follows: Section I describes the 
data and our technical trading rules; Section II presents the empirical results 
of the tests utilizing traditional techniques; Section III describes the boot- 
strap methodology, Section IV presents the empirical results from the boot- 
strap simulations, and Section V concludes and summarizes our results. 

I. Data and Technical Trading Rules 

A. Data 

The data series used in this study is the Dow Jones Industrial Average 
(DJIA) from the first trading day in 1897 to the last trading day in 1986-a 
collection of 90 years of daily data. Stock price averages are available on a 
daily basis back to February 1985, but 1897 was the first full year for the 
industrial average. Before this date, Charles H. Dow, editor of the Wall Street 

6 Our selection of trading strategies was clearly influenced by previous work in this area. 
However, all the strategies chosen have a very long history. Modern technical analysis probably 
originated in the work of Charles Dow near the turn of the century. Examples of the rules used 
in this paper can be found more than 60 years ago by influential market participants. For 
example, the ideas of trading ranges and resistance or support levels can be found in Wyckoff 
(1910). More "recent" references to these techniques can be found in Neill (1931) and Schabacker 
(1930). The use of moving averages was discussed by Gartley (1930). Further examples of the 
important early studies of these techniques have been carefully collected in Coslow (1966). The 
early use and popularity of these methods reduces the possibility that data-snooping biases are 
driving our results since we have at least 60 years of "fresh" data. Moreover, the early studies 
used just a few years in examining their trading strategies, thus contaminating little of the early 
data. A second issue here is the sensitivity of our results to the exact moving-average lengths 
used. Recent results in LeBaron (1990) for foreign exchange markets suggest that the results are 
not sensitive to the actual lengths of the rules used. We have replicated some of those results for 
the Dow index. 
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Journal, had occasionally published stock averages of various kinds, but not 
on a regular basis. No other index of U.S. stocks has been available for so 
long a period of time.7 

The stocks included in the index have changed from time to time. Changes 
were more frequent in the earlier days. From the beginning, the list included 
large, well-known, and actively traded stocks. In recent years the 30 stocks in 
the index represent about 25 percent of the market value of all NYSE stocks. 
All the stocks are very actively traded and problems associated with nonsyn- 
chronous trading should be of little concern with the DJIA. 

In addition to the full sample, results are presented for four subsamples: 
1/1/97-7/30/14, 1/1/15-12/31/38, 1/1/39-6/30/62, and 
7/1/62-12/31/86. These subsamples are chosen for several reasons. The 
first subsample ends with the closing of the stock exchange during World 
War I. The second subsample includes both the rise of the twenties and the 
turbulent times of the depression. The third subsample includes the period of 
World War II and ends in June 1962, the date at which the Center for 
Research in Securities Prices (CRSP) begins its daily price series. The last 
subsample covers the period that was extensively researched because of data 
availability. 

B. Technical Trading Rules 

Two of the simplest and most widely used technical rules are investigated: 
moving average-oscillator and trading range break-out (resistance and sup- 
port levels). According to the moving average rule, buy and sell signals are 
generated by two moving averages of the level of the index-a long-period 
average and a short-period average. In its simplest form this strategy is 
expressed as buying (or selling) when the short-period moving average rises 
above (or falls below) the long-period moving average. The idea behind 
computing moving averages it to smooth out an otherwise volatile series. 
When the short-period moving average penetrates the long-period moving 
average, a trend is considered to be initiated. The most popular moving 
average rule is 1-200, where the short period is one day and the long period 
is 200 days. While numerous variations of this rule are used in practice, we 
attempted to select several of the most popular ones: 1-50, 1-150, 5-150, 
1-200, and 2-200. The moving-average decision rule is often modified by 
introducing a band around the moving average. The introduction of a band 
reduces the number of buy (sell) signals by eliminating "whiplash" signals 
when the short and long period moving averages are close. We test the 
moving average rule both with and without a one percent band. 

Our first rule, called the variable length moving average (VMA), initiates 
buy (sell) signals when the short moving average is above (below) the long 

7 Pierce (1991) contains a brief history of the early Dow averages along with the series used in 
this study. 
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moving average by an amount larger than the band. If the short moving 
average is inside and band no signal is generated. This method attempts to 
simulate a strategy where traders go long as the short moving average moves 
above the long and short when it is below. With a band of zero this method 
classifies all days into either buys or sells. Other variations of this rule put 
emphasis on the crossing of the moving averages. They stress that returns 
should be different for a few days following a crossover. To capture this we 
test a strategy where a buy (sell) signal is generated when the short moving 
average cuts the long moving average from below (above). Returns during the 
next ten days are then recorded.8 Other signals occurring during this ten-day 
period are ignored. We call this rule a fixed-length moving average (FMA). 

There are numerous variations of the moving average rule that we do not 
examine. We focus on the simplest and most popular versions. Other variants 
of the moving average rule also consider the slope of the long-period moving 
average in addition to whether the short-period moving average penetrated 
from above or below. In other versions changes in trading volume are 
examined before buy (sell) decisions are reached. Thus, numerous moving 
average rules can be designed, and some, without a doubt, will work. How- 
ever, the dangers of data snooping are immense. We present results for all 
the rules examined and place emphasis on the robustness of the results over 
time. 

Our final technical rule is trading range break-out (TRB). A buy signal is 
generated when the price penetrates the resistance level. The resistance level 
is defined as the local maximum. Technical analysts believe that many 
investors are willing to sell at the peak. This selling pressure will cause 
resistance to a price rise above the previous peak. However, if the price rises 
above the previous peak, it has broken through the resistance area. Such a 
breakout is considered to be a buy signal. Under this rule, a sell signal is 
generated when the price penetrates the support level which is the local 
minimum price. The underlying rationale is that the price has difficulties 
penetrating the support level because many investors are willing to buy at 
the minimum price. However, if the price goes below the support level, the 
price is expected to drift downward. In essence, technical analysts recom- 
mend buying when the price rises above its last peak and selling when the 
price sinks below its last trough. 

To implement the trading range strategy, we defined rules in accordance 
with the moving average strategy. Maximum (or minimum) prices were 
determined based on the past 50, 150, and 200 days. In addition, the rule 
is implemented with and without a one percent band. As with the moving- 
average rule, numerous variations of the basic trading range strategy are 
being implemented in practice. 

8 The selection of 10-day returns is arbitrary. For some rules we tried two-week returns and 
obtained essentially the same results. 
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II. Empirical Results: Traditional Tests 

A. Sample Statistics 

Table I contains summary statistics for the entire series and four subsam- 
ples for 1- and 10-day returns on the Dow Jones series. Returns are calcu- 
lated as log differences of the Dow level. In Panel A the results for the daily 
returns are presented. These returns are strongly leptokurtic for the entire 
series and all the subsamples. All of the subperiods except one show some 
signs of skewness. Volatility is largest for the subperiod containing the Great 
Depression, and it appears to have declined in the most recent subperiods. 
Serial correlations are generally small with the exception of a few relatively 

Table I 

Summary Statistics for Daily and 10-Day Returns 
Results are presented for the full sample and 4 nonoverlapping subperiods. Returns are mea- 
sured as log differences of the level of the Dow index. 10-day returns are based on nonoverlap- 
ping 10-day periods. p(i) is the' estimated autocorrelation at lag i for each series. Numbers 
marked with * (**) are significant at the 5% (1%) levels for a two-tailed test. "Bartlett std." 
refers to the Bartlett standard error for the autocorrelation, 1/ gN. 

Panel A: Daily Returns 

Full Sample 97-14 15-38 39-62 62-86 

N 25036 5255 7163 6442 6155 
Mean 0.00017 0.00012 0.00014 0.00020 0.00020 
Std. 0.0108 0.0099 0.0147 0.0075 0.0088 
Skew - 0.1047** - 0.4804** 0.0193 -0.7614** 0.2707** 
Kurtosis 16.00** 8.86** 12.75** 13.60** 11.57** 

p(l) 0.033** 0.013 0.009 0.117** 0.079** 
p(2) - 0.026** -0.020 - 0.029* -0.068** -0.001 
p(3) 0.012* 0.041** -0.006 0.036** 0.009 
p(4) 0.046** 0.085** 0.055** 0.028* -0.012 
p(5) 0.022** 0.042** 0.027* 0.014 -0.011 
Bartlett std. 0.006 0.014 0.012 0.012 0.013 

Panel B: 10-Day Returns 

Full Sample 97-14 15-38 39-62 62-86 

Mean 0.0017 0.0012 0.0014 0.0019 0.0019 
Std. 0.0351 0.0339 0.0486 0.0272 0.0296 
Skew - 0.4583** -0.1762 - 0.9105** - 1.1551** -0.0786 
Kurtosis 7.91** 4.59** 8.51** 9.05** 3.91** 

p(l) 0.037* -0.004 0.065* 0.032 -0.002 
p(2) 0.018 0.044 0.001 - 0.090* -0.041 
p(3) 0.013 0.071 0.056 -0.037 0.007 
p(4) 0.011 -0.125** 0.024 0.045 0.026 
p(5) 0.032 0.094* -0.022 0.018 -0.021 
Bartlett std. 0.019 0.043 0.037 0.039 0.040 
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large values at the first lag in the two most recent subperiods. Panel B 
reports the values for 10-day nonoverlapping returns. A reduction in kurtosis 
for all subperiods is observed. Volatility shows a similar pattern to the daily 
returns with the largest value in the period containing the Great Depression, 
and the lowest values in the two most recent subperiods. For the 10-day 
returns the autocorrelations are generally quite small with no indication of 
an increase in the latter subperiods. 

B. The Moving-Average Strategy 

Results from trading strategies based on moving average rules for the full 
sample are presented in Panel A of Table II. The rules differ by the length of 
the short and long period and by the size of the band. For example (1, 200, 0) 
indicates that the short period is one day, the long period is 200 days, and the 
band is zero percent. We present results for the 10 rules that we examined. 
The moving-average rule is used to divide the entire sample into either buy 
or sell periods depending on the relative position of the moving averages. If 
the short moving average is above (below) the long, the day is classified as a 
buy (sell). This rule is designed to replicate returns from a trading rule where 
the trader buys when the short moving average penetrates the long from 
below and stays in the market until the short moving average penetrates the 
long moving average from above. After this signal the trader moves out of the 
market or sells short. We will refer to this rule as the "variable-length 
moving average" (VMA). In Table II we report daily returns during buy and 
sell periods and corresponding t-statistics.9 

The results in Table II are striking. The last column lists the differences 
between the mean daily buy and sell returns. All the buy-sell differences are 
positive and the t-tests for these differences are highly significant, rejecting 
the null hypothesis of equality with zero. In every case the introduction of the 
one percent band increased the spread between the buy and sell returns. The 
first two columns in Panel A are the number of buy and sell signals gener- 
ated. For each of the trading rules about 50 percent more buy signals are 
generated than sells, which is consistent with an upward-trending market. 

9 The t-statistics for the buys (sells) are, 

14 - 

(WI/N + u2/Nr)112 

where Plr and Nr are the mean return and number of signals for the buys and sells, and A and 
N are the unconditional mean and number of observations. a 2 is the estimated variance for the 
entire sample. For the buy-sell the t-statistic is, 

1kb - As 

(ar2/N6 + cr2/Ns)1 / 

where pLb and Nb are the mean return and number of signals for the buys and g, and N, are the 
mean return and number of signals for the sells. 
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Table II 

Standard Test Results for the Variable-Length Moving (VMA) Rules 
Results for daily data from 1897-1986. Rules are identified as (short, long, band) where short 

and long are the short and long moving averages respectively, and band is the percentage 

difference that is needed to generate a signaf. "N(Buy)" and "N(Sell)" are the number of buy and 

sell signals reported during the sample. Numbers in parentheses are standard t-ratios testing 

the difference of the mean buy and mean sell from the unconditional 1-day mean, and buy-sell 
from zero. "Buy > 0" and "Sell > 0" are the fraction of buy and sell returns greater than zero. 

The last row reports averages across all 10 rules. Results for subperiods are given in Panel B. 

Panel A: Full Sample 

Period Test N(Buy) N(Sell) Buy Sell Buy > 0 Sell > 0 Buy-Sell 

1897-1986 (1,50,0) 14240 10531 0.00047 -0.00027 0.5387 0.4972 0.00075 
(2.68473) (-3.54645) (5.39746) 

(1,50,0.01) 11671 8114 0.00062 -0.00032 0.5428 0.4942 0.00094 
(3.73161) (-3.56230) (6.04189) 

(1,150,0) 14866 9806 0.00040 - 0.00022 0.5373 0.4962 0.00062 
(2.04927) (-3.01836) (4.39500) 

(1,150,0.01) 13556 8534 0.00042 -0.00027 0.5402 0.4943 0.00070 
(2.20929) (-3.28154) (4.68162) 

(5,150,0) 14858 9814 0.00037 -0.00017 0.5368 0.4970 0.00053 
(1.74706) (-2.61793) (3.78784) 

(5,150,0.01) 13491 8523 0.00040 -0.00021 0.5382 0.4942 0.00061 
(1.97876) (-2.78835) (4.05457) 

(1,200,0) 15182 9440 0.00039 -0.00024 0.5358 0.4962 0.00062 
(1.93865) (-3.12526) (4.40125) 

(1,200,0.01) 14105 8450 0.00040 - 0.00030 0.5384 0.4924 0.00070 
(2.01907) (-3.48278) (4.73045) 

(2,200,0) 15194 9428 0.00038 - 0.00023 0.5351 0.4971 0.00060 
(1.87057) (-3.03587) (4.26535) 

(2,200,0.01) 14090 8442 0.00038 -0.00024 0.5368 0.4949 0.00062 
(L81771) (-3.03843) (4.16935) 

Average 0.00042 -0.00025 0.00067 

Panel B: Subperiods 

1897-1914 (1,150,0) 2925 2170 0.00039 -0.00025 0.5323 0.4959 0.00065 
(1.19348) (- 1.48213) (2.30664) 

1915-1938 (1, 150,0) 4092 2884 0.00048 -0.00045 0.5503 0.4941 0.00092 
(1.16041) (- 1.82639) (2.59189) 

1939-1962 (1,150,0) 4170 2122 0.00036 -0.00004 0.5422 0.5151 0.00040 
(1.06310) (- 1.26932) (1.98384) 

1962-1986 (1,150,0) 3581 2424 0.00037 -0.00012 0.5205 0.4777 0.00049 
(0.94029) (-1.49333) (2.11283) 

The mean buy and sell returns are reported separately in columns 3 and 4. 
The buy returns are all positive with an average one-day return of 0.042 

percent, which is about 12 percent at an annual rate. This compares with the 
unconditional one-day return of 0.017 percent from Table I. Six of the ten 
tests reject the null hypothesis that the returns equal the unconditional 
returns at the 5 percent significance level using a two-tailed test. The other 
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four tests are marginally significant. For the sells, the results are even 
stronger. All the sell returns are negative with an average daily return for 

the 10 tests of - 0.025 percent which is about - 7 percent at an annual rate. 
The t-tests for equality with the unconditional mean return are all highly 
significant, with all the t-values being less than -2.5. 

The fifth and sixth columns in Table II present the fraction of buys and 

sells greater than zero. For buys, this fraction ranges from 53 to 54 percent 
and, for sells, it is about 49 percent. Under the null hypothesis that technical 
rules do not produce useful signals the fraction of positive returns should be 

the same for both buys and sells. Performing a binomial test shows that all 
these differences are highly significant and the null hypothesis of equality 
can be rejected. 

The negative returns in Table II for sell signals are especially noteworthy. 
These returns cannot be explained by various seasonalities since they are 

based on about 40 percent of all trading days.10 Many previous studies found 

as we did that returns are predictable. This predictability can reflect either: 
(1) changes in expected returns that result from an equilibrium model, or (2) 
market inefficiency. In general, it is difficult to distinguish between these two 

alternative explanations. Although rational changes in expected returns are 

possible it is hard to imagine an equilibrium model that predicts negative 
returns over such a large fraction of trading days. 

In Panel B of Table II we repeat the results for several subperiods. To save 

space, results are presented for only the (1, 150, 0) rule. We found no evidence 

that the results are different across the subperiods. 
The second moving average test, the fixed-length moving average (FMA) 

rule, examines fixed 10-day holding periods after a crossing of the two moving 

averages. Results are presented in Table III. For all the tests the buy-sell 
differences are positive. The average difference without a band is 0.77 

percent while the average with a one percent band is 1.09 percent. These are 

quite substantial returns given that the unconditional 10-day return from 

Table I is only 0.17 percent. For 7 of these 10 tests the null hypothesis that 

the difference is equal to zero can be rejected at the 5 percent level. The 

remaining 3 tests are marginally significant. As before, in all cases the 

addition of a one percent band to the trading rule increases the buy-sell 
difference." The table also reports the buy and sell returns separately. For 

all of the buys the returns are greater than the unconditional mean 10-day 
return with an average of 0.53 percent. The sells are all negative and fall 

below the unconditional mean 10-day return with an average of -0.40 

10 The series used in this study does not contain dividends. Results in Lakonishok and Smidt 

(1988) suggest that our finding of negative returns during sell periods will not be altered with 

the inclusion of dividends. In addition, in the context of our trading rules it is very unlikely that 

the pattern of dividend payments would differ substantially between buy and sell periods. 
11 There is an unusual effect of the band on the number of buy and sell signals. For several of 

the rules an addition of the band actually increases the number of buy signals. In our testing 

method signals which occur within 10 days of a previous signal are blocked out, so the 

elimination of a few sell signals may actually increase the number of buys. 
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Table III 

Standard Test Results for the Fixed-Length Moving (FMA) Rules 
Results for daily data from 1897-1986. Cumulative returns are reported for fixed 10-day periods 
after signals. Rules are identified as (short, long, band) where short and long are the short and 
long moving averages respectively, and band is the percentage difference that is needed to 
generate a signal. "N(Buy)" and "N(Sell)" are the number of buy and sell signals reported during 
the sample. Numbers in parentheses are standard t-ratios testing the difference of the mean buy 
and mean sell from the unconditional 1-day mean, and buy-sell from zero. "Buy > 0" and 
"Sell > 0" are the fraction of buy and sell returns greater than zero. The last row reports 
averages across all 10 rules. 

Test N(Buy) N(Sell) Buy Sell Buy > 0 Sell > 0 Buy-Sell 

(1,50,0) 340 344 0.0029 - 0.0044 0.5882 0.4622 0.0072 
(0.5796) (-3.0021) (2.6955) 

(1,50,0.01) 313 316 0.0052 -0.0046 0.6230 0.4589 0.0098 
(1.6809) (-3.0096) (3.5168) 

(1,150,0) 157 188 0.0066 - 0.0013 0.5987 0.5691 0.0079 
(1.7090) (-1.1127) (2.0789) 

(1,150,0.01) 170 161 0.0071 -0.0039 0.6529 0.5528 0.0110 
(1.9321) (- 1.9759) (2.8534) 

(5,150,0) 133 140 0.0074 - 0.0006 0.6241 0.5786 0.0080 
(1.8397) (-0.7466) (1.8875) 

(5,150,0.01) 127 125 0.0062 -0.0033 0.6614 0.5520 0.0095 
(1.4151) (- 1.5536) (2.1518) 

(1,200,0) 114 156 0.0050 -0.0019 0.6228 0.5513 0.0069 
(0.9862) (- 1.2316) (1.5913) 

(1,200,0.01) 130 127 0.0058 - 0.0077 0.6385 0.4724 0.0135 
(1.2855) (-2.9452) (3.0740) 

(2,200,0) 109 140 0.0050 - 0.0035 0.6330 0.5500 0.0086 
(0.9690) (- 1.7164) (1.9092) 

(2,200,0.01) 117 116 0.0018 - 0.0088 0.5556 0.4397 0.0106 
(0.0377) (-3.1449) (2.3069) 

Average 0.0053 -0.0040 0.0093 

percent. For all the tests the fraction of buys greater than zero exceeds the 
fraction of sells greater than zero. 

The profits that can be derived from these trading rules depend, among 
other things, on the number of signals generated. The lowest number of 
signals is for the (2,200, 0.01) rule which generates an average of 2.8 signals 
per year over the 90 years of data. The largest number of signals is generated 
by the (1,50,0) rule with 7.6 signals per year. We explore the following 
strategy: upon a buy signal, we borrow and double the investment in the Dow 
Index; upon a sell signal, we sell shares and invest in a risk-free asset. Given 
that the number of buy and sell signals is similar we make the following 
assumptions: (1) the borrowing and lending rates are the same, and (2) the 
risk during buy periods is the same as the risk during sell periods. Under 
these assumptions such a strategy, ignoring transaction costs, should produce 
the same return as a buy and hold strategy. Using the (1, 50, 0.01) rule as an 
example, there are on average about 3.5 buy and sell signals per year. On the 
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buy side, because of leverage, we gain on average, 1.8 percent (3.5 x 0.0052). 
On the sell side, by not being in the market, we gain 1.6 percent (3.5 x 0.0046). 
This results in an extra return of 3.4 percent, before transactions costs, which 
is substantial when compared to the 5 percent annual return on the Dow 
Index (excluding dividends). 

C. Trading Range Break 

Results for the trading range break rule are presented in Table IV. With 
this rule buy and sell signals are generated when the price level moves above 
or below local maximums and minimums. Local maximums and minimums 
are computed over the preceding 50, 150, and 200 days. We also use a band 
technique where the price level must exceed the local maximum by one 
percent, or fall below the minimum by one percent. For the trading range 
break rule we compute 10-day holding period returns following buy and sell 
signals. 

The results are presented in the same format as Table III. The average 
buy-sell return is 0.86 percent. Of the six tests, all reject the null hypothesis 
of the buy-sell difference being equal to zero. The buy return is positive across 
all the rules with an average of 0.55 percent. For 3 out of the 6 rules, the buy 
returns are significantly different from the unconditional 10-day return at 
the 5 percent level, and the remaining 3 rules are marginally significant. One 

Table IV 

Standard Test Results for the Trading Range Break (TRB) Rules 
Results for daily data from 1897-1986. Cumulative returns are reported for fixed 10-day periods 
after signals. Rules are identified as (short, long, band) where short and long are the short and 
long moving averages respectively, and band is the percentage difference that is needed to 
generate a signal. "N(Buy)" and "N(Sell)" are the number of buy and sell signals reported during 
the sample. Numbers in parentheses are standard t-ratios testing the difference of the mean buy 
and mean sell from the unconditional 1-day mean, and buy-sell from zero. "Buy > 0" and 
"Sell > 0" are the fraction of buy and sell returns greater than zero. The last row reports 
averages across all 6 rules. 

Test N(Buy) N(Sell) Buy Sell Buy > 0 Sell > 0 Buy-Sell 

(1,50,0) 722 415 0.0050 0.0000 0.5803 0.5422 0.0049 
(2.1931) (-0.9020) (2.2801) 

(1,50,0.01) 248 252 0.0082 - 0.0008 0.6290 0.5397 0.0090 
(2.7853) (- 1.0937) (2.8812) 

(1, 150,0) 512 214 0.0046 - 0.0030 0.5762 0.4953 0.0076 
(1.7221) (- 1.8814) (2.6723) 

(1,150,0.01) 159 142 0.0086 -0.0035 0.6478 0.4789 0.0120 
(2.4023) (- 1.7015) (2.9728) 

(1,200,0) 466 182 0.0043 - 0.0023 0.5794 0.5000 0.0067 
(1.4959) (-1.4912) (2.1732) 

(1,200,0.01) 146 124 0.0072 - 0.0047 0.6164 0.4677 0.0119 
(1.8551) (- 1.9795) (2.7846) 

Average 0.0063 -0.0024 0.0087 
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possible reason for this relatively strong rejection when compared to the 
moving average rules is the fact that this rule generates more buy and sell 
signals. The sell returns are negative across all the rules with an average of 
- 0.24 percent. For the individual rules, 1 out of the 6 are significantly 
different from the unconditional 10-day return. Results for the subperiods are 
similar and are not presented to save space.12 

III. Bootstrap Methodology 

The results of Section II are intriguing, but there are still some missing 
pieces that the bootstrap methodology can help to solve. First, we do not 
compute a comprehensive test across all rules. Such a test would have to take 
into account the dependencies between results for different rules. We now 
develop a joint test of significance for our set of trading rules. This is 
accomplished by utilizing bootstrap distributions for these tests. This is a 
major advantage of the bootstrap methodology, since constructing such tests 
using traditional statistical methods would require properly accounting for 
the complex dependencies across the different rules, which is an extremely 
difficult task.13 

Second, the t-ratios reported earlier assume normal, stationary, and time- 
independent distributions. For stock returns there are several well-known 
deviations from this assumed distribution. Among these are: leptokurtosis, 
autocorrelation, conditional heteroskedasticity, and changing conditional 
means. These important aspects of the data will be addressed using distribu- 
tions generated from simulated null models for stock prices.14 Using this 
strategy we can address all the issues brought up earlier. A third benefit of 
this methodology is that we can examine the standard deviations of returns 
during the buy and sell periods. This gives us an indication of the riskiness of 
the various strategies during buy and sell periods. Overall, these results can 
shed some light on whether predictability of stock returns is a result of 
market inefficiency or time varying equilibrium returns. Complete resolution 
of this debate is not possible, however. 

12 Our strong results in support of technical analysis differ from some of the earlier-mentioned 
studies. This might be because we utilized a much longer period and hence were in a position to 
obtain much stronger rejections of the null hypothesis. Moreover, we focused on the Dow Jones 
Index, whereas some of the previous studies looked at individual securities which could be 
another explanation for the observed differences. 

13 While there are cases where it is possible to determine the distribution of statistics based on 
sums of correlated random variables, this in general is not a simple analytical problem. 
Moreover, in this case the distribution of these random variables is unknown. 

14 While our hypothesis testing using parametric bootstraps is able to account for some forms 
of heteroskedasticity, it is limited ta the specific functional forms used for the volatility process 
(i.e., the GARCH-M and EGARCH models). More general adjustments for heteroskedasticity 
would certainly be useful, but it is not clear how they could be implemented in the technical 
trading methodology of this paper. Finally, the parametric bootstrap gives us a specification test 
of these commonly used null models. More general nonparametric adjustments for heteroskedas- 
ticity may be useful, but are still at the experimental stage and beyond the scope of this paper. 
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The bootstrap methodology is described in detail in the Appendix. We 
provide an informal description here. The returns conditional on buy (sell) 
signals using the raw Dow Jones data are compared to conditional returns 
from simulated comparison series. The trading rules classify each day in our 
sample as either buy (b), sell (s), or neutral (n). Where the classification of 
day t is based on information up to and including day t. Define the h day 
return at t as 

r = log0(Pt +) - log(Pd)3 
We will be interested in various conditional expectations based on the trading 
rule signals. For example, let 

mb =E(rt Ibt) 

be the expected h day return from t to t + h conditional on a buy signal at 
time t, and 

ms = E(rh I st) 

be the expected h day return from t to t + h conditional on a sell signal at 
time t. We also look at conditional standard deviations, 

(E[(rth - mb) I bt )1/ (E[(rth - ms) I St ) 

These conditional expectations will be estimated using the sample means. 
The values from the Dow series will then be compared with empirical 
distributions from the simulated null models for stock returns. Our methodol- 
ogy can be used not only to assess the profitability of various trading 
strategies, but also as a specification test for alternative models. 

The distributions of the conditional moments under various null hypothe- 
ses for stock return movements will be estimated using the bootstrap method- 
ology inspired by Efron (1982), Freedman (1984), Freedman and Peters 
(1984a, 1984b), and Efron and Tibshirani (1986). Computer simulations of 
time series designed to capture the properties of the various null models are 
performed using the estimation-based bootstrap of Freedman and Peters 
(1984a, 1984b). In this procedure each model is fit to the original series to 
obtain estimated parameters and residuals. We standardize the residuals 
using estimated standard deviations for the error process. The estimated 
residuals are then redrawn with replacement to form a scrambled residuals 
series which is then used with the estimated parameters to form a new 
representative series for the given null model.15 The standardized residuals 

15 Freedman (1984) has adduced theoretical arguments as well as simulation evidence that the 
estimation-based bootstrap gives good estimates of -standard errors for a class of linear models 
driven by error processes with unknown variance matrices that must be estimated from the data. 
Unfortunately, there is little published work on time series processes driven by heteroskedastic 
innovations beyond a rather brief treatment in Freedman (1984). Two examples dealing with 
heteroskedasticity in a cross-sectional context are Beran (1986) and Hardle (1990). By using the 
estimation-based bootstrap in the context of the GARCH-M and Exponential GARCH we are 
clearly taking the procedure beyond what has been proved in the bootstrap literature. In the 
absence of theoretical proof of convergence we present "computer proofs" of convergence in 
Figures 1 and 2 which will be explained in the next section. 
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are not restricted to a particular distribution, such as Gaussian, by this 
procedure.16 

Each of the simulations is based on 500 replications of the null model.17 
This should provide a good approximation of the return distribution under 
the null model. The null hypothesis is rejected at the a percent level if 
returns obtained from the actual Dow Jones data are greater than the a 
percent cutoff of the simulated returns under the null model. The methodol- 
ogy described in this section combines tests based on technical trading rules 
with bootstrap techniques for generating distributions of statistics under null 
models. 

In this study representative price series are simulated from the following 
widely used processes for stock prices: a random walk with a drift, auto- 
regressive process of order one (AR(1)), generalized autoregressive condi- 
tional heteroskedasticity in-mean model (GARCH-M), and Exponential 
GARCH (EGARCH). The random walk with drift series was simulated by 
taking the returns from the original Dow Jones series and "scrambling" 
them. The term "scrambling" refers to the formal bootstrap sampling process 
described in the Appendix. The "scrambling" procedure forms a new time 
series of returns by randomly drawing from the original series with replace- 
ment. This scrambled series will have the same drift in prices, the same 
volatility, and the same unconditional distribution. However, by construction 
the returns are independent, identically distributed. 

The second model for the simulation is an AR(1), 

rt =b + prt- 1 + et, | P < 1 

where rt is the return on day t and Et is independent, identically distributed. 
The parameters (b, p) and the residuals et are estimated from the Dow Jones 
series using OLS. The residuals are then resampled with replacement and 
AR(1)'s are then generated using the estimated parameters and scrambled 
residuals. To the extent that returns over short periods of time are positively 
correlated, the technical strategies might produce "abnormal" returns. 
Conrad and Kaul (1990) report first-order autocorrelation of 0.20 for a 
value-weighted portfolio of the largest companies during the period 
1962-1985. They find that higher order autocorrelation, beyond a lag of one 
day, is essentially zero. Our data also reveal the presence of significant 
autocorrelation in some of the subsamples. Hence, in the presence of positive 

16 W7hile the bootstrap procedure allows deviations from the Gaussian distribution in the 
residuals series, estimation is performed for the nonlinear models using a Gaussian likelihood. 
For certain cases Bollerslev and Wooldridge (1990) have shown that estimators based on 
Gaussian likelihood will still be consistent under other error distributions. 

17 The tests in this paper will present simulated p-values. The number of repetitions required 
for the estimation of p-values and confidence intervals using bootstrap techniques is quite large. 
Using 500 repetitions of estimates of objects such as P(X > c) where X is a random variable and 
c is a constant will have a maximum standard error of V(0.52/500) = 0.022. W7hile this number 
gives an upper bound on the precision of our estimates it probably greatly exceeds our actual 
standard errors. In Section IV experiments are performed to test the reliability of our estimates 
by extending the bootstrap replications to 2000. 
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autocorrelation the "abnormal" returns from our trading strategy might be a 
result of an autoregressive process that generates stock returns. 

The third model for simulation is a GARCH-M model: 

rt=a + yht + bet i + rt 

ht ao + alet-1 + 8ht-1 

-t ht"2zt zt N(O, 1). 

In this model, the error, et, is conditionally normally distributed and serially 
uncorrelated, and the conditional variance, ht, is a linear function of the 
square of the last period's errors and of the last period's conditional variance. 
This specification of the conditional variance implies positive serial correla- 
tion in the conditional second moment of the return process periods of high 
(or low) volatility are likely to be followed by periods of high (low) volatility. 
The conditional returns in this model are a linear function of the conditional 
variance (see Engle, Lilien, and Robins (1987)) and the past disturbance, 
et 1. Under this return-generating process, volatility can change over time 
and the expected returns are a function of volatility as well as past returns. 
This is a rich specification and is popular in financial economics literature.18 
The parameters and standardized residuals are estimated from the Dow 
Jones series using maximum likelihood. Once again the residuals are resam- 
pled with replacement and used along with the estimated parameters to 
generate GARCH-M series. The GARCH-M might be consistent with the 
efficient market hypothesis; higher ex ante returns are expected when condi- 
tional volatility is high under the GARCH-M specification. 

The fourth model that will be estimated and simulated is the Exponential 
GARCH (EGARCH) model developed by Nelson (1991):19 

rt= a + ye h + bet1 + Et 

ht ao +?g(zt_1) + pht-1 

g(zt) ozt + w(Iztl - (2/1T)1/2) 

et e e(1/2tzt Zt -[N(0, 1) 

While this model also tries to capture persistent volatility as does the 
GARCH model, it differs in two important ways. First, the log of the condi- 
tional variance now follows an autoregressive process. Second, it allows 
previous returns to affect future volatility differently depending on their 
signs. This is clearly seen in the g function above. This is designed to capture 
a phenomenon in asset returns observed by Black (1976) where negative 
returns were generally followed by larger volatility than positive returns. 

18 The specification used in this paper, the GARCH(1, 1)-M, was determined using the Schwarz 
(1978) model specification criterion. It is similar to the model specification used in French, 
Schwert, and Stambaugh (1987). 

19 Nelson (1991) replaces the normal distribution used here with the generalized error distri- 
bution. 
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Once again the model is 'estimated and the standardized residuals and 
estimated parameters are used to generate simulated Exponential GARCH 
series. 

Table V contains estimation results for the three models which will be used 
for comparison with the actual Dow series, the AR(1), the GARCH-M, and the 
EGARCH. Panel A presents the results from estimation of an AR(1) using 
OLS. The results reveal a significant first order autocorrelation for the Dow 
series. Panel B shows the results from estimation of a GARCH-M using 
maximum likelihood. The model estimated also contains an MA(1) to account 
for the short horizon autocorrelations. The results are consistent with previ- 
ous studies, such as French, Schwert, and Stambaugh (1987) who utilized the 
Standard and Poor's index over the time period 1928-84. The estimates of 

Table V 

Parameter estimates for AR(i), GARCH-M, and Exponential 
GARCH models 

Estimated on daily returns series 1897-1986. The AR(1) is estimated by OLS. The GARCH-M 
and Exponential GARCH are estimated using maximum likelihood. rt is the continuously 
compounded return on day t and ht is the conditional variance on day t. The numbers in 
parenthesis are t-ratios. 

Panel A: AR(1) Parameter Estimates 

rt = a + brt_i + et 

a b 
0.00015 0.03330 
(2.50) (5.27) 

Panel B: GARCH-M Parameter Estimates 

rt = a + yht + be1 + e ? = h1/2z 

ht = a0o + at1iQj + 3ht-, 

zt N(0, 1) 

ao a1 3 e b a 

1.32e-6 0.094 0.896 2.09 0.09 2.24e-4 
(25.4) (51.8) (522) (2.80) (14.2) (3.47) 

Panel C: Exponential GARCH Parameter Estimates 

rt = a + ye ht + bet-1 + ?t et = e(l/2)htzt 

ht= ao + g(zt- 1) + ht- 1 

g(zt) = Ozt?+ )(izti - (2/1T)1/2) 

zt N(0, 1) 

ao la y b 0 co a * 104 

- 0.1867 0.9795 2.4457 0.1024 -0.0692 0.1758 -0.0550 
(-23.0) (1224) (3.11) (16.2) (-34.6) (53.3) (-0.080) 
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the GARCH-M model indicate that the conditional variance of stock returns 
is time varying and is autocorrelated. The conditional variance in t - 1, ht 1, 
and the shock in t -1, et2 1, are highly significant in estimating the condi- 
tional volatility at time t, ht. The estimated parameters also show a signifi- 
cantly positive relation between conditional variance and conditional mean, y 
of 2.09. This is in close agreement with French, Schwert, and Stambaugh, 
who estimated a y of 2.41 for their entire sample. The b parameter, captur- 
ing the first order autocorrelation in the series, is also significantly positive. 
Panel C presents the results for the exponential GARCH. They display a 
strong persistance in variance, a significant MA(1) term, and a positive 
relation between conditional variance and conditional mean as did the 
GARCH. The important difference from the exponential GARCH is the 
estimated parameter,O, which is significantly negative. This indicates 
the inverse relation between returns today and future volatility mentioned 
previously. 

IV. Empirical Results: Bootstrap Tests 

A. Random Walk Process 

In Table VI we display the results of random walk simulations. To save 
space we present only a subset of the rules used. In order to describe the 
format of Table VI we start with the first row of Panel A which presents the 
results for the (1, 50, 0) VMA rule. All the numbers presented in this row are 
the fractions of the simulated result which are larger than the results for the 
original Dow series. Results for returns are presented in the columns labeled, 
Buy, Sell, and Buy-Sell, while the results for standard deviations are pre- 
sented in the columns labeled ob and o>. The number in the column labeled 
Buy, which is 0.00, shows that none of the simulated random walks gener- 
ated a mean buy return as large as that from the original Dow series. This 
number can be thought of as a simulated "p-value." Turning to the Sell 
column the fraction is 1.00, showing that all of the simulated random walks 
generated mean sell returns larger than the mean sell return from the Dow 
series. The fraction in the Buy-Sell column, 0.00, reports that none of the 
simulated random walks generated mean buy-sell differences larger than the 
mean differences for the Dow series. In the column o-b (or o-) the reported 
numbers are 1.00 (or 0.00) showing that all (or none) of the standard 
deviations for the simulated random walks were greater (or smaller) than 
those from the Dow series. The results for the returns are consistent with the 
traditional tests presented earlier. However, the results for the standard 
deviations are new. Not only do the buy signals select out periods with higher 
conditional means, they also pick periods with lower volatilities. This is in 
contrast to sell periods where the conditional return is lower, and the 
volatility is higher. An often-used explanation for predictability in returns is 
changing risk levels. Our result are not in accord with this explanation. Aside 
from the negative returns during sell periods being inconsistent with existing 
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equilibrium models, the higher returns for buys do not seem to arise during 
riskier periods. Similar result are obtained for the other VMA rules. 

In Panel B of Table VI the results are summarized across all the rules. We 
construct a statistic to jointly test our set of trading rules. The bootstrap 
technique allows us to choose any function to aggregate results across the 
various rules. We decided to use a simple average over the ten rules. Thus, 
for each of our 500 simulations we compute an average over all the rules for 
both returns and standard deviations. The first row of Panel B, labeled 
Fraction > Dow, follows the same format as the results presented in Panel A. 
Not surprisingly, these results strongly agree with those for the individual 
rules. The second row, labeled Mean, presents the returns and standard 
deviations for the buys, sells, and buy-sells, averaged over the 500 simulated 
random walks. The returns and standard deviations for buys and sells are 
essentially the same and close to their unconditional values reported in 
Table I. The third row, labeled Dow, presents the same statistics for the 
original Dow series. For both returns and standard deviations large differ- 
ences not seen in the bootstrap results are observed. The average difference 
between the buys and sells is 0.067 percent as presented previously in Table 
II. The standard deviations for buys and sells are 0.89 and 1.34 percent, 
respectively, indicating that the market is less volatile during buy periods 
relative to sell periods. The results for the FMA and TRB rules are also 
presented in Table VI. The results, although somewhat weaker, are similar to 
results from the VMA rule and therefore will not be discussed. 

Most of the results in this table are in accord with the findings using 
traditional methods (Tables II-IV), although some differences can be ob- 
served. For example, focusing on sell returns for the TRB (1,200,0) rule, 
Table VI indicates that only 3.4 percent of the random walk simulations 
generated a value as low as that in the original series. The entry in Table IV, 
based on traditional tests, is a t-statistic of - 1.49. The probability for a 
standard normal being less than this value is about 7.7 percent. This sug- 
gests that the distributional assumptions of the standard tests may have an 
impact on statistical inferences. 

The sensitivity of our inferences to the choice of 500 replications is exam- 
ined in Figure 1. As an example we use the rule that generates the largest 
estimated p-value in Table VI. This is the (1, 200, 0) FMA rule. The esti- 
mated p-values for the buy, sell, and buy-sell returns using 500 replications 
are, respectively, 0.11, 0.91, 0.02. Figure 1 presents estimates of these values 
for replication sizes varying from 100 to 2000. To make the graph easier to 
read the sells are presented as 1 - (Fraction > Dow). The figure shows that 
extending the replications beyond 500 adds little to the reliability of the 
estimated p-values. 

B. AR(i) Process 

Table VII repeats the previous results for a simulated AR(1) process by 
utilizing the estimated residuals from the original series. This experiment is 
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Table VI 

Simulation Tests From Random Walk Bootstraps for 
500 Replications 

The log difference series is resampled with replacement and exponentiated back to a simulated 
price series. The rows marked "Fraction > Dow" refer to the fraction of simulations generating a 
mean or standard deviation larger than those from the actual Dow series. The trading rules are, 
variable-length moving average (VMA), fixed-length moving average (FMA), trading range break 
(TRB). Panel B presents results for the averages across all the rules for each reported statistic. 
"Dow" refers to the actual mean return or standard deviation from the Dow, and "Mean" refers 
to the mean from the simulated series. 

Panel A: Individual Rules 

Rule Result Buy 0-b Sell u-S Buy-Sell 

(1,50,0) VMA Fraction > Dow 0.00000 1.00000 1.00000 0.00000 0.00000 
FMA Fraction > Dow 0.25000 0.17200 1.00000 0.13000 0.00000 
TRB Fraction > Dow 0.01000 1.00000 0.85800 0.00000 0.01000 

(1,50,0.01) VMA Fraction > Dow 0.00000 1.00000 1.00000 0.00000 0.00000 
FMA Fraction > Dow 0.02400 0.59800 1.00000 0.01000 0.00000 
TRB Fraction > Dow 0.00000 0.09800 0.86800 0.00000 0.00000 

(1,150,0) VMA Fraction > Dow 0.00400 1.00000 1.00000 0.00000 0.00000 
FMA Fraction > Dow 0.02800 0.69600 0.88400 0.00000 0.00400 
TRB Fraction > Dow 0.03000 1.00000 0.99000 0.00000 0.00000 

(1,150,0.01) VMA Fraction > Dow 0.00200 1.00000 1.00000 0.00000 0.00000 
FMA Fraction > Dow 0.00800 0.98200 0.99400 0.00000 0.00000 
TRB Fraction > Dow 0.00000 0.94600 0.96600 0.00000 0.00000 

(1,200,0) VMA Fraction > Dow 0.01000 1.00000 1.00000 0.00000 0.00000 
FMA Fraction > Dow 0.11200 0.83800 0.91200 0.08400 0.03000 
TRB Fraction > Dow 0.06000 1.00000 0.96600 0.00000 0.00600 

(1,200,0.01) VMA Fraction > Dow 0.00600 1.00000 1.00000 0.00000 0.00000 
FMA Fraction > Dow 0.04600 0.99800 1.00000 0.00000 0.00000 
TRB Fraction > Dow 0.01200 0.99200 0.97800 0.00000 0.00200 

Panel B: Rule Averages 

Rule average VMA Fraction > Dow 0.00200 1.00000 1.00000 0.00000 0.00000 
Mean 0.00016 0.01078 0.00017 0.01077 0.00000 
Dow 0.00042 0.00890 -0.00025 0.01342 0.00067 

Rule average FMA Fraction > Dow 0.01000 0.99400 0.99800 0.00000 0.00000 
Mean 0.00167 0.03391 0.00150 0.03402 0.00016 
Dow 0.00531 0.03064 -0.00399 0.04156 0.00930 

Rule average TRB Fraction > Dow 0.00400 0.99800 0.98800 0.00000 0.00000 
Mean 0.00169 0.03394 0.00160 0.03400 0.00009 
Dow 0.00633 0.03000 -0.00238 0.05398 0.00871 
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Figure 1. 

designed to detect whether the results from the trading rules could be caused 
by daily serial correlations in the series. For all our trading rules the return 
on a day in which a buy (or sell) signal is received is expected to be large (or 
small). If the returns are positively autocorrelated we should also expect 
higher (or lower) returns on the following days. Indeed, the results reported 
in Table V document some degree of positive autocorrelation. 

Table VII, Panel B, confirms that some differences between buys and sells 
do occur with an AR(1) process. For the VMA rules the average buy return 
from the simulated AR(1) is 0.019 percent, and the average sell return is 
0.014 percent. This compares with an unconditional return of 0.017 percent 
for the entire sample. The AR(1) clearly creates a buy-sell spread as pre- 
dicted, but the magnitude of this spread is not large when compared with the 
Dow series which produces a spread of 0.067 percent. The reported "p-value" 
of zero confirms that this difference cannot be explained by the AR(1) process. 
For the FMA and TRB rules the spreads produced by the AR(1) process are 
0.10 and 0.12 percent, respectively. These spreads should be compared to the 
much larger spreads from the original Dow series of 0.93 and 0.87 percent. 

C. GARCH-M Process 

The next simulations use a GARCH-M process. In this model both condi- 
tional means and variances are allowed to change over time. A changing 
conditional mean can potentially explain some of the differences between buy 
and sell returns. 

Checking the Buy-Sell column in Table VIII, Panel B, the VMA rule shows 
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Table VII 

Simulation Tests From AR(1) Bootstraps for 500 Replications 
The AR(1) residual series is resampled with replacement and simulated using the AR(1) 
estimated parameters. The rows marked "Fraction > Dow" refer to the fraction of simulations 
generating a mean or standard deviation larger than those from the actual Dow series. The 
trading rules are, variable-length moving average (VMA), fixed-length moving average (FMA), 
trading range break (TRB). Panel B presents results for the averages across all the rules for each 
reported statistic. "Dow" refers to the actual mean return or standard deviation from the Dow, 
and "Mean" refers to the mean from the simulated series. 

Panel A: Individual Rules 

Rule Result Buy 0-b Sell OS Buy-Sell 

(1,50,0) VMA Fraction > Dow 0.00400 1.00000 1.00000 0.00000 0.00000 
FMA Fraction > Dow 0.35800 0.37000 1.00000 0.24600 0.00800 
TRB Fraction > Dow 0.02400 1.00000 0.75200 0.00000 0.02600 

(1,50,0.01) VMA Fraction > Dow 0.00000 1.00000 1.00000 0.00000 0.00000 
FMA Fraction > Dow 0.04800 0.81400 0.99800 0.03600 0.00400 
TRB Fraction > Dow 0.00000 0.27000 0.77000 0.00000 0.00000 

(1,150,0) VMA Fraction > Dow 0.01400 1.00000 1.00000 0.00000 0.00000 
FMA Fraction > Dow 0.05200 0.84000 0.81400 0.00000 0.03200 
TRB Fraction > Dow 0.08200 1.00000 0.97800 0.00000 0.00600 

(1,150,0.01) VMA Fraction > Dow 0.00800 1.00000 1.00000 0.00000 0.00000 
FMA Fraction > Dow 0.03000 0.99400 0.97400 0.00000 0.00200 
TRB Fraction > Dow 0.00400 0.99200 0.94200 0.00000 0.00400 

(1,200,0) VMA Fraction > Dow 0.01400 1.00000 1.00000 0.00000 0.00000 
FMA Fraction > Dow 0.17400 0.93800 0.85600 0.15200 0.05800 
TRB Fraction > Dow 0.10200 1.00000 0.94400 0.00000 0.02200 

(1,200,0.01) VMA Fraction > Dow 0.01200 1.00000 1.00000 0.00000 0.00000 
FMA Fraction > Dow 0.11000 1.00000 0.99800 0.00000 0.00000 
TRB Fraction > Dow 0.02200 0.99800 0.96600 0.00000 0.00600 

Panel B: Rule Averages 

Rule average VMA Fraction > Dow 0.00600 1.00000 1.00000 0.00000 0.00000 
Mean 0.00019 0.01078 0.00014 0.01077 0.00006 
Dow 0.00042 0.00890 - 0.00025 0.01342 0.00067 

Rule average FMA Fraction > Dow 0.04000 0.99800 0.99800 0.00000 0.00000 
Mean 0.00216 0.03485 0.00113 0.03495 0.00104 
Dow 0.00531 0.03064 - 0.00399 0.04156 0.00930 

Rule average TRB Fraction > Dow 0.00600 1.00000 0.96000 0.00000 0.00200 
Mean 0.00223 0.03498 0.00106 0.03485 0.00118 
Dow 0.00633 0.03000 - 0.00238 0.05398 0.00871 
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Table VIII 

Simulation Tests From GARCH-M Bootstraps for 500 Replications 
GARCH-M returns series are simulated using the estimated parameters and standardized 
residuals. The rows marked "Fraction > Dow" refer to the fraction of simulations generating a 
mean or standard deviation larger than those from the actual Dow series. The trading rules are, 
variable-length moving average (VMA), fixed-length moving average (FMA), trading range break 
(TRB). Panel B presents results for the averages across all the rules for each reported statistic. 
"Dow" refers to the actual mean return or standard deviation from the Dow, and "Mean" refers 
to the mean from the simulated series. 

Panel A: Individual Rules 

Rule Result Buy 0-b Sell o-S Buy-Sell 

(1,50,0) VMA Fraction > Dow 0.11600 0.99400 0.99800 0.14200 0.01600 
FMA Fraction > Dow 0.58000 0.76400 0.99800 0.67600 0.07800 
TRB Fraction > Dow 0.12800 0.98600 0.73600 0.26400 0.14600 

(1,50,0.01) VMA Fraction > Dow 0.05600 0.99400 0.99200 0.14400 0.01400 
FMA Fraction > Dow 0.19600 0.88600 0.99800 0.65600 0.00400 
TRB Fraction > Dow 0.14200 0.96800 0.72600 0.45400 0.14400 

(1,150,0) VMA Fraction > Dow 0.10600 0.98200 0.99600 0.15600 0.01000 
FMA Fraction > Dow 0.17000 0.95200 0.76000 0.26600 0.12600 
TRB Fraction > Dow 0.28000 0.99600 0.92800 0.25800 0.09000 

(1,150,0.01) VMA Fraction > Dow 0.11000 0.98200 0.99600 0.14600 0.01200 
FMA Fraction > Dow 0.13000 0.98800 0.94800 0.28400 0.03600 
TRB Fraction > Dow 0.19800 1.00000 0.83800 0.39800 0.12000 

(1,200,0) VMA Fraction > Dow 0.11600 0.98600 0.99600 0.14800 0.01200 
FMA Fraction > Dow 0.36600 0.96400 0.85200 0.78200 0.19000 
TRB Fraction > Dow 0.32400 1.00000 0.85800 0.24800 0.14800 

(1,200,0.01) VMA Fraction > Dow 0.12000 0.98000 0.99600 0.15200 0.01200 
FMA Fraction > Dow 0.27400 1.00000 0.99600 0.39600 0.01400 
TRB Fraction > Dow 0.29600 1.00000 0.85600 0.41000 0.14000 

Panel B: Rule Averages 

Rule average VMA Fraction > Dow 0.08600 0.98600 0.99600 0.15400 0.01000 
Mean 0.00031 0.01136 0.00013 0.01210 0.00018 
Dow 0.00042 0.00890 -0.00025 0.01342 0.00067 

Rule average FMA Fraction > Dow 0.23000 0.99400 0.99200 0.48600 0.01600 
Mean 0.00369 0.04255 0.00147 0.04342 0.00222 
Dow 0.00531 0.03064 -0.00399 0.04156 0.00930 

Rule average TRB Fraction > Dow 0.19600 1.00000 0.86200 0.34600 0.10600 
Mean 0.00577 0.05312 0.00167 0.05242 0.00410 
Dow 0.00633 0.03000 -0.00238 0.05398 0.00871 
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that the GARCH-M generates an average spread of 0.018 percent, compared 
with 0.067 percent for the Dow series. Of the simulations only one percent 
generated buy-sell returns as large as those from the Dow series. The 
GARCH-M generates a positive buy-sell spread that is substantially larger 
than the spread under the AR(1), but this spread is still small when com- 
pared with that from the original Dow series.20 These findings are repeated 
for the FMA and TRB rules, although the results are somewhat weaker. 

The discrepancies for sell returns are in particular large. For example, for 
the VMA rule, the GARCH-M generates a sell average return of 0.013 percent 
which should be compared with an actual return of - 0.025 percent for the 
Dow series. This difference is highly significant as indicated by the "p-value" 
of 0.996. Results for the FMA and TRB rules strongly support the VMA 
results, and overall present strong evidence that the GARCH-M is incapable 
of generating returns consistent with the negative returns for the sell 
periods. 

To test the reliability of our results for the 500 replications a test of 
convergence is performed similar to that done for the random walk. Results 
are again estimated for the (1, 200, 0) FMA trading rule and are presented in 
Figure 2. This figure shows the estimated p-values varying the number of 
replications from 100 to 2000. The results reveal that the estimated p-values 
are reliable after 500 replications. It should be noted that this test is crucial 

0.4 [ - LI. 

0 _315 - 
....__ _..__ _ _ _ _ 

0.3 13-Iv -SCW 

2P5) - _ _ _ _ __ _ _ _ 

-~0.2 - 

().15 -_ 

0 
0 500 1000 1500 2000 

Replicaitions 
Figure 2. 

20 The GARCH-M estimated here also contains an MA(1) component. Part of this returns 
spread could be coming from this element of the model. 
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since the asymptotic properties of the bootstrap for the GARCH-M are not 
known. 

The GARCH-M model not only fails in replicating returns, but also is 
unable to match the results for volatility. For the Dow series standard 
deviations are lower for the buy periods than for the sell periods. Panel B of 
Table VIII for the VMA rule shows the GARCH-M average standard devia- 
tion for buys to be 1.14 percent, which should be compared with 0.89 percent 
for the Dow series. The "p-value" of 0.986 supports the significance of this 
difference. Hence, the GARCH-M is substantially overestimating the volatil- 
ity for buy periods. This provides a partial explanation for the high returns 
that the GARCH-M generates during buy periods. The GARCH-M does better 
at replicating volatility during sell periods. The model generates a standard 
deviation of 1.21 percent while the actual standard deviation is 1.34 percent, 
and the "p-value" for this difference is 15.4 percent. The performance of the 
GARCH-M in predicting volatility during sell periods is even better for the 
FMA and TRB. 

In summary, the GARCH-M model fails to replicate the conditional returns 
for the Dow Index. Moreover, the focal point of the GARCH models is to 
predict volatility where, as with returns, the GARCH-M model is also not 
able to match the results in the actual series.21 

D. EGARCH 

The next simulations examine the EGARCH model. These results are 
presented in Table IX. The important difference in the EGARCH model is 
that the conditional variance reacts differently to positive and negative 
shocks to the returns series. This may have the potential to explain some of 
our results for standard deviations from the simple GARCH-M model. 

In Panel B of Table IX we see in the Buy, Sell, and Buy-Sell columns that 
the results are similar to those from the GARCH-M. For example, for the 
VMA rule the EGARCH generates a mean buy-sell difference of 0.002 percent 
and a p-value of 0.00. Checking the buy and sell returns separately, we see 
that for the buys the estimated p-value is 0.00 and for the sells it is 99.8 
percent. The results for the other two tests are generally consistent with the 
VMA results. 

Turning to volatility, we observe some changes in the results when com- 
pared to GARCH-M. While the volatility during sell periods is generally 
similar to that from the GARCH-M, volatility during buy periods is different. 
For all three rules, the conditional buy volatilities are lower for the EGARCH 

21 Although it seems very unlikely, market microstructure issues could still explain the results 
that we see. To address this issue in the context of the AR(1) and GARCH-M models we 
experimented with skipping one day before using a specific trading rule signal. In other words, a 
buy signal on Wednesday would generate a purchase at Thursday's close rather than Wednesday 
as is used for all the tests in the paper. We performed this experiment for quite a few of the rules 
and obtained results that are similar to our previous findings without skipping a day. 
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Table IX 

Simulation Tests From Exponential GARCH Bootstraps for 
500 Replications 

Exponential GARCH returns series are simulated using the estimated parameters and standard- 
ized residuals. The rows marked "Fraction > Dow" refer to the fraction of simulations generating 
a mean or standard deviation larger than those from the actual Dow series. The trading rules 
are, variable-length moving average (VMA), fixed-length moving average (FMA), trading range 
break (TRB). Panel B presents results for the averages across all the rules for each reported 
statistic. "Dow" refers to the actual mean return or standard deviation from the Dow, and 
"Mean" refers to the mean from the simulated series. 

Panel A: Individual Rules 

Rule Result Buy fb Sell US Buy-Sell 

(1,50,0) VMA Fraction > Dow 0.00600 0.34000 0.99800 0.03400 0.00200 
FMA Fraction > Dow 0.65000 0.40800 1.00000 0.35200 0.03600 
TRB Fraction > Dow 0.00800 0.17600 0.87800 0.23600 0.02400 

(1,50,0.01) VMA Fraction > Dow 0.00000 0.31200 0.99600 0.02600 0.00000 
FMA Fraction > Dow 0.17200 0.55400 0.99800 0.38800 0.00200 
TRB Fraction > Dow 0.01800 0.13000 0.86600 0.35600 0.01600 

(1,150,0) VMA Fraction > Dow 0.00400 0.23000 0.99800 0.05600 0.00000 
FMA Fraction > Dow 0.14600 0.78400 0.84000 0.07800 0.06800 
TRB Fraction > Dow 0.04000 0.50400 0.96800 0.31000 0.01200 

(1,150,0.01) VMA Fraction > Dow 0.00000 0.14800 0.99800 0.04600 0.00000 
FMA Fraction > Dow 0.11000 0.96200 0.97000 0.11600 0.01600 
TRB Fraction > Dow 0.02600 0.76200 0.92400 0.30800 0.01400 

(1,200,0) VMA Fraction > Dow 0.00200 0.30400 0.99800 0.05000 0.00000 
FMA Fraction > Dow 0.35000 0.88000 0.90400 0.77800 0.12800 
TRB Fraction > Dow 0.07400 0.81400 0.92000 0.24600 0.03200 

(1,200,0.01) VMA Fraction > Dow 0.00400 0.16600 1.00000 0.05000 0.00000 
FMA Fraction > Dow 0.25000 0.99400 0.99400 0.28400 0.00400 
TRB Fraction > Dow 0.08200 0.91000 0.93800 0.34600 0.03000 

Panel B: Rule Averages 

Rule average VMA Fraction > Dow 0.00000 0.20600 0.99800 0.04800 0.00000 
Mean 0.00024 0.00867- 0.00022 0.01218 0.00002 
Dow 0.00042 0.00890 - 0.00025 0.01342 0.00067 

Rule average FMA Fraction > Dow 0.15600 0.96400 0.99800 0.32600 0.00200 
Mean 0.00351 0.03470 0.00200 0.04031 0.00151 
Dow 0.00531 0.03064 -0.00399 0.04156 0.00930 

Rule average TRB Fraction > Dow 0.01600 0.58800 0.94400 0.30000 0.00800 
Mean 0.00310 0.03070 0.00354 0.05150 -0.00043 
Dow 0.00633 0.03000 -0.00238 0.05398 0.00871 
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than for the GARCH-M. For example, for the VMA rule the volatilities for the 
EGARCH and GARCH-M are 0.87 percent and 1.14 percent, respectively. 

To summarize, the EGARCH does not explain the differences between the 
buy and sell returns generated by the technical trading rules. The EGARCH, 
however, produces a large difference between the buy and sell volatility 
levels. This difference leads to closer agreement with the actual Dow series 
for the buys, but large volatility during sell periods is still not well matched 
by this model. 

V. Conclusions 

The recent studies on predictability of equity returns from past returns 
suggest that the conclusion reached by many earlier studies that found 
technical analysis to be useless might have been premature. In this paper we 
investigate two of the simplest and most popular trading rules-moving 
averages and trading-range breaks-by utilizing a very long data series, the 
Dow Jones Industrial Average index from 1897 to 1986. For statistical 
inferences, in addition to the standard tests, we apply the bootstrap method- 
ology. The returns conditional on buy (or sell) signals from the actual Dow 
Jones data are compared to returns from simulated comparison series gener- 
ated by a fitted model from the null hypothesis class being tested. The null 
models tested are: random walk with a drift, AR(1), GARCH-M, and EGARCH. 

Overall our results provide strong support for the technical strategies that 
we explored. The returns obtained from buy (sell) signals are not likely to be 
generated by the four popular null models. Consistently, buy (sell) signals 
generate returns which are higher (or lower) than "normal" returns. A typical 
difference in returns over a 10-day period between a buy and a sell signal is 
about 0.8 percent, which is sizable when compared to a "normal" 10-day 
upward drift of about 0.17 percent. The small positive autocorrelation in 
returns cannot explain the observed patterns and accounts for less than 10 
percent of the differences in returns between buys and sells. Furthermore, 
the difference in returns between buys and sells is not easily explained by 
risk. The results reveal that, following a buy signal, stock returns are 
substantially less volatile than following a sell signal. The most intriguing 
result is for the moving average rule with a variable-length holding period. 
Under this rule, an investor is continuously in the market. Following buy 
signals, the market increased at an annual rate of 12 percent. In contrast, 
following sells, a decrease of 7 percent is observed. This negative conditional 
return over a large fraction of trading days is an intriguing result because 
predictably negative returns are inconsistent with existing equilibrium 
models. 

The popular GARCH-M model cannot explain the returns that our various 
rules generate. Moreover, our statistical design enables us to better under- 
stand the problems with the GARCH-M. For example, the GARCH-M pre- 
dicts roughly the same volatility for buys and for sells. The actual results 
reveal a different picture. Following a buy signal the volatility is substan- 
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tially below the volatility following sell signals. Therefore, the GARCH-M 
model fails not only in predicting returns, but also in predicting volatility. 
The EGARCH model also displays similar problems in matching conditional 
means in the data. However, it performs better than the GARCH-M in 
predicting volatility, although it also fails in matching the volatility during 
sell periods. 

Our results are consistent with technical rules having predictive power. 
However, transactions costs should be carefully considered before such 
strategies can be implemented. Of course, there are cases where the marginal 
transaction costs are zero, such as for pension funds that must reinvest 
dividends and funds contributed by sponsors. Opportunities also might exist 
in the futures markets where transactions costs are very small. 

In sum, this paper shows that the returns-generating process of stocks is 
probably more complicated than suggested by the various studies using linear 
models. It is quite possible that technical rules pick up some of the hidden 
patterns. We would like to emphasize that our analysis focuses on the 
simplest trading rules. Other more elaborate rules may generate even larger 
differences between conditional returns. Why such rules might work is an 
intriguing issue left for further studies. 

Appendix: Use of the Bootstrap to Estimate p-Values for 
Technical Trading Rules Under Null Models 

We want to be able to estimate confidence intervals for trading profits 
under various null models whose parameters will be estimated on our data. 
To do this we briefly explain the bootstrap method we shall use. A more 
complete description can be had by writing the authors. 

Following Efron (1982, chapters 5 and 10) and Singh (1981), let (E1,..-. , En) 
be n IID draws, i.e., a random sample, from distribution F. Let 
T(E1 ... , En; F) be a random variable of interest which may depend directly 
upon F. Let Fn be the empirical distribution function that puts mass 1/n on 
Ei, i = 1,2 .. ., n. The bootstrap is a method that approximates the distribu- 
tion of T(E1 ... , En; F) under F by the distribution of T(E1,... , En; Fn) 
under Fny where (E1,.. ., E) denotes an IID sample from Fn. In other words 
the bootstrap estimates 

Prob{T(El, ... .,En; F) E A} (Al) 

by 

Prob{T(El, ... En;Fn) EA} (A2) 

Here, Prob{-} denotes the probability of event { }. Bootstrapping is done by 
taking B bootstrap samples, Zb = (El b ... , En b), b = 1, 2, .., B (each of 
which consists of n IID draws from Fn). Estimate (A2) by 

l B 

E- IA(T(Zb; Fn)), (A3) B b=l 
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where IA denotes the indicator function of event A which takes the value 1 
when the event occurs and zero otherwise. By taking B to infinity with cheap 
computer time one can get as close to (A2) as one wishes. We shall show how 
to apply the bootstrap to estimate quantities based upon technical trading 
rules. 

Case 1: {Xt} is IID. 

Assume {Xt} is IID, drawn from F. Start with the random walk, 

Xt = Yt -Yt_, = Et, Et F~ (A4) 
where Y = log(P) where P is stock price, X is returns, and Et is the 
innovation at date t. 

We wish to test the adequacy of (A4) using a data set of n = 1 stock prices 
P ..., P +1. Build returns by setting 

Xt =Yt-Yt1 = log(Pt) - log(Pt1), t = 2,3,...,n + 1. (A5) 

Define date t to be a buy signal if 

Pt >MAt,L, and Pt-,<MAtl1L, (A6) 
where 

1 L-1 
MAtL=- Pt (A7) 

L (=A 

For each buy signal purchase one dollar's worth of stock, hold it for h periods, 
then sell it to obtain 

Rh =t+h t (A8) 
Pt 

Let 

R= - R h (A9) 
n teB 

where B is the set of all buy signals. 
The bootstrap simulations allow us to compare Rn with the empirical 

distribution for Rn from the simulated random walks, Rn; z. We can then 
estimate objects such as Prob(Rn; z > x). 

We will write Rn;Z when we want to focus attention on R as a function of 
the random sample Z = {X1,. ..., Xn}. Unfortunately, deriving an analytical 
expression for either a small sample or asymptotic distribution for Rn; Z is 
very difficult. Fortunately, we can estimate it using the bootstrap. We will 
need to show a few properties for Rn;z and that it conforms to the standard 
bootstrap cases. First, under the null model 

lim Rn;Z = E(R), a.s. 
n -oo 

Second, E(R) can be written in the form E(R) = t(F). Third, we will show 
E(Rn;Z) = E(R) so that E(Rn;Z) is an unbiased estimator of E(R). Fourth, 
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we will show how the bootstrap can be used to estimate any quantity of the 
form Prob{Rn; z E A). 

The first issue that must be dealt with is stationarity. The price process 
{P,} generated by (A4) is not a stationary process. This is because Pt = eYt, 
and Yt is stationary in first differences, not in levels. It turns out, however, 
that stationarity of {Xt} allows us to write the probability of event (A6) and 
the quantities (A8) and (A9) as time stationary functions of a finite number of 
{Xt}. Stationarity and ergodicity of {Xt} will allow us to prove that Rn; z 
converges to E(R) almost surely as n -> oo. It will also allow us to carry over 
central limit theorems and allow us to use the bootstrap to estimate quanti- 
ties of the form Prob{Rn; z E A}. Central limit theory is needed by Bickel and 
Freedman (1981), Singh (1981), and Freedman (1984) to justify use of the 
bootstrap quantity (A2) and to approximate the quantity of interest (Al). 

First, use the homogeneity of degree zero of (A6) in pt-L to write it in the 
form 

exp(Xt + -- +Xt-L+2) > {exp(Xt + .. +Xt-L+2) + +exp(Xt-L+2)}/L, 

and 

exp(Xt- 1 + *t +Xt-L+1) 

< {exp(Xt -1 + * +XtL+l1) + --- +exp(Xt-L+?)}/L. (A6') 

Note that the indicator function IB, of event (A6'), which we shall call BUY, 
can be written as a time stationary function of (Xt,. . , Xt-L + i)* Turn now to 
returns for a given t in B. 

From (A8) returns can be written 

pt+h t = exp E Xt+- 1, (A10) 

which is a time stationary function of a finite number of consecutive X's. 
Hence Rn may be written as a time stationary function of a finite number of 
consecutive X's.Hence, 

1 
Rn;z Z E exp[xt+l + +Xt+h] - 1, (All) 

where the sum is over all t that are indicated a buys. That is to say that 
(All) can be written in the form, after defining the function H( ) and the 
vector W = (Xt,L+,..., Xt+h) in the obvious way, 

1 
Rn; z = - H(W(t)). (A12) 

n 

Equation (A12) is a time average of a time stationary function of a time 
stationary process. Therefore we would expect convergence almost surely of 
Rn; to E(R) and convergence in distribution of n/2[Rn; z - E(R)] to N(0, V) 
where N(O,.V) denotes normal distribution with mean zero and variance V. 
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Routine application of the central limit theorems for weakly dependent 
processes in Gallant and White (1988) gives us central limit theory for (A12) 
for a much broader class of {Xt} processes than the IID process (A4). This will 
be useful when we turn to the more general cases where the {Xt} is a stable 
autoregressive process or a stable GARCH-M process. Turn now to the 
bootstrap. 

By stationarity of the process {Xt} we have 

nE(H) 
ERn; z = = E(R) = E(H). (A13) 

n 

In the case that {Xt} is IID drawn from the distribution F the quantity EH 
may be written as a manyfold integral against dF. Hence there is a mapping 
J(F) from the space of distribution functions to the real line such that 

EH= J(F), (A14) 

and, hence, we have the form appropriate for the bootstrap. In preparation 
for the bootstrap write (A12) thus 

1 
Rn; z = -YH(W(t)) = T(Z; F), (A15) 

n 

where Z denotes the entire sample (X1,..., Xn) under the null hypothesis 
X1,..., Xn is IID F. Recall that Fn is built from the data by placing mass 1/n 
on return xi, i = 2, 3, ..., n + 1 from (A5). We relabel 2, ..., n + 1 as 1, ...,n 
in what follows. Note that Fn is the nonparametric maximum likelihood 
estimate of F and this fact coupled with (A14) plays a role in delivering the 
quality of bootstrap estimates (Efron (1982, chapter 5)). To estimate p-values 
we must estimate the cumulative distribution function, 

Prob{Rn;z < x} = Prob{T(Z; F) < x} = J(x; F). (A16) 

Do this by drawing B bootstrap samples Z(b) = (X1 b, X2, b.... Xn, b) from 
Fn, b = 1, 2, .. . ,B and compute 

1A 

B: I(T(Zb ; Fn) < x) = J( x; Fn) * (A17) 
B 

The estimated p-value of the null model is now obtained from the data value 
rn and 

A 

= 1 -_J(r ;Fn). (A18) 

The estimated A values are reported for two basic types of technical trading 
rule statistics for four classes of null models. 

Case 2: {Xt} is a stable autoregressive process. 
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Let the null hypothesis to be tested be the following. There are three 
parameters ao, a,, 1all < 1 such that, 

Xt = ao + a1Xt_1 + Et, X0 x0, given Et -F IID, (A19) 

with zero mean and finite variance. Also, impose strong enough moment 
conditions on F so that the central limit theorem of White (1984, p. 119, see 
Exercise 5.17) can be applied to (A19) to show consistency and asymptotic 
normality of ordinary least squares estimates of ao and a,. 

We follow Freedman (1984) to estimate the distribution of Rn; z as follows. 
First, estimate (A19) from the data by OLS and obtain the estimated residu- 
als et. n.Define Fn by placing mass 1/n on et; n, t = 1,..., n. Second, obtain 
Xt* by drawing Et* from Fn and generating using (A19) with the estimated 
parameters and X0' = x0. Let Z* represent the sequence of Xt*. Now calcu- 
late rn;Z* using this bootstrap sample and the trading rules. From these 
calculations the distribution for Rn; Z can now be estimated. 

Freedman (1984) extends the asymptotic theory of the bootstrap done by 
Bickel and Freedman (1981) to estimating the distribution function of param- 
eter estimates for autoregressive models like (A19) under the stability condi- 
tion la, I < 1 and some finiteness conditions on higher order moments of F. So 
we feel quite secure that the bootstrap should do a good job of estimating 
p-values for Rn; Zunder the null class (A19). 

Case 3: GARCH-M and Exponential GARCH. 

Both these models can be written in the form 

Xt = G(I, I A, Et), (A20) 

where A is a vector of parameters to be estimated, It is an information set 
which can include past Xt k but no present or future X's, and {Et} is an IID 
F process with mean zero and finite variance. In the section of our paper that 
uses the bootstrap to estimate confidence intervals for technical trading rules 
under these models we just used the bootstrap algorithm in the obvious way 
motivated by Case 2. That is to say, just estimate the parameter vector A and 
repeat the steps of the bootstrap algorithm replacing ordinary least squares 
estimation with the estimation method for A in (A20). We have not found any 
asymptotic justification for the bootstrap method like that of Freedman 
(1984) for general models like (A20). Therefore we follow Freedman and 
Peters (1984, p. 102) and do an evaluation experiment of the quality of our 
bootstrap estimates. These results are reported in Section IV of the text. 
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